N2SID: Nuclear norm subspace identification of innovation models
نویسندگان
چکیده
The identification of multivariable state space models in innovation form is solved in a subspace identification framework using convex nuclear norm optimization. The convex optimization approach allows to include constraints on the unknown matrices in the data-equation characterizing subspace identification methods, such as the lower triangular block-Toeplitz of weighting matrices constructed from the Markov parameters of the unknown observer. The classical use of instrumental variables to remove the influence of the innovation term on the data equation in subspace identification is avoided. The avoidance of the instrumental variable projection step has the potential to improve the accuracy of the estimated model predictions, especially for short data length sequences.
منابع مشابه
Nuclear Norm Subspace Identification (N2SID) for short data batches
Subspace identification is revisited in the scope of nuclear norm minimization methods. It is shown that essential structural knowledge about the unknown data matrices in the data equation that relates Hankel matrices constructed from input and output data can be used in the first step of the numerical solution presented. The structural knowledge comprises the low rank property of a matrix that...
متن کاملN2SID: Nuclear Norm Subspace Identification
The identification of multivariable state space models in innovation form is solved in a subspace identification framework using convex nuclear norm optimization. The convex optimization approach allows to include constraints on the unknown matrices in the data-equation characterizing subspace identification methods, such as the lower triangular block-Toeplitz of weighting matrices constructed ...
متن کاملNuclear norm system identification with missing inputs and outputs
We present a system identification method for problems with partially missing inputs and outputs. The method is based on a subspace formulation and uses the nuclear norm heuristic for structured low-rank matrix approximation, with the missing input and output values as the optimization variables. We also present a fast implementation of the alternating direction method of multipliers (ADMM) to ...
متن کاملSubspace Identification of Local 1D Homogeneous Systems
This paper studies the local subspace identification of 1D homogeneous networked systems. The main challenge lies at the unmeasurable interconnection signals between neighboring subsystems. Since there are many unknown inputs to the concerned local system, the corresponding identification problem is semi-blind. To cope with this problem, a nuclear norm optimization based subspace identification...
متن کاملNonlinear System Identification Using Hammerstein-Wiener Neural Network and subspace algorithms
Neural networks are applicable in identification systems from input-output data. In this report, we analyze theHammerstein-Wiener models and identify them. TheHammerstein-Wiener systems are the simplest type of block orientednonlinear systems where the linear dynamic block issandwiched in between two static nonlinear blocks, whichappear in many engineering applications; the aim of nonlinearsyst...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Automatica
دوره 72 شماره
صفحات -
تاریخ انتشار 2016